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Abstract

Accurate evaluation of the performance of buildings
participating in Demand Response (DR) programs is
critical to the adoption and improvement of these pro-
grams. Typically, we calculate load sheds during DR
events by comparing observed electric load against
counterfactual predictions made using statistical base-
line models. Many baseline models exist and these
models can produce different shed estimates. More-
over, modelers implementing the same baseline model
can make different modeling implementation choices,
which may affect shed estimates. In this work, using
real data, we analyze the effect of different modeling
implementation choices on shed estimates. We fo-
cus on five issues: weather data source, resolution of
data, methods for determining when buildings are oc-
cupied, methods for aligning building data with tem-
perature data, and methods for power outage filtering.
Results indicate sensitivity to the weather data source
and data filtration methods as well as an immediate
potential for automation of methods to choose build-
ing occupied modes.

1 Introduction

With continuing Smart Grid development, there is
potential for electric loads such as commercial build-
ings to become active participants in power system
operations [1]. In traditional demand response (DR)
programs, system operators, utilities, or third-party
aggregators (henceforth, DR program administra-
tors) can achieve system-wide demand reductions by
providing financial incentives for buildings to reduce
their demand during time periods when the grid is
stressed. One way to do this is via critical peak pric-
ing programs, in which DR program administrators
incentivize behavior by increasing electricity prices
when the system is operating near its peak, encour-
aging building operators to shed (i.e. curtail) load or
shift load to an off-peak time.

DR programs are evaluated by their impact and
cost effectiveness. Therefore, a key to the success
of a DR program is accurate estimation of demand
sheds achieved by program participants. These esti-
mations are typically made with baseline models that
estimate what building load would have been if a DR
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event had not been called. These ‘baselines’ are com-
pared with actual measurements of building load to
estimate the size of load sheds. Baseline models are
used for a variety of tasks including Measurement and
Verification (M&V), improving DR program design
and operation, and, in some cases, settling business
transactions surrounding DR events.
There are many examples of baseline models in the

energy efficiency literature [2, 3, 4, 5, 6, 7] and the
DR literature [8, 9, 10, 11]. Some of these studies
compare the accuracy of estimates produced by dif-
ferent baseline models. However, shed estimates from
the same model can differ if the model is implemented
by two different building modelers. This is because
specific algorithm implementation choices can affect
model results. For example, different approaches to
interpreting and filtering bad data, different meth-
ods for calculating model parameters, and different
sources of model inputs can all affect final baseline
predictions. This issue is of importance because as
modeling frameworks become more widely used, the
effects of implementation differences could cause dif-
ferences in interpretation of DR performance. There-
fore, it is important to understand which sorts of dif-
ferences have the most effect on results.
In this work, we use a linear regression model re-

lating time-of-week, outdoor air temperature, and
whether or not the building is occupied to build-
ing load, as described in [12]. We re-implemented
this model on a new platform and describe lessons
learned through validation. Then, we look at five
variations on choices made in the original implemen-
tation: (1) different sources of weather data, compar-
ing the National Climactic Data Center data used in
the original analysis, which is heavily curated but at
a lower time-resolution and usually measured further
from the sites, to Weather Underground data, which
is less curated, higher resolution, and measured closer
to the sites; (2) different resolution of building data,
comparing the predicted sheds using 15-, 30-, and
60-minute resolved data; (3) different approaches for
determining whether the building was in an occu-
pied or unoccupied mode, with the transition times
either estimated manually/visually or with an algo-
rithm that automatically calculates these transition
times based on a heuristic; (4) different methods for

aligning building load data with temperature data;
and (5) different methods of choosing a model param-
eter that determines sensitivity to identifying power
outages in the load data.

The rest of this paper is organized as follows. Sec-
tion 2 describes the data we used in this analysis.
Section 3 details the baseline model as well as a val-
idation of the new implementation against the origi-
nal implementation. Section 4 discusses the modeling
variations we examined in this work and presents the
results. In Sections 5 and 6, we discuss and conclude
the work.

2 Data

We use 15-minute interval whole building electric
load data from 38 large commercial buildings and
industrial facilities in the Pacific Gas and Electric
Company’s (PG&E) Automated Critical Peak Pric-
ing (CPP) Program between 2007 and 2009. In the
CPP program, on up to 12 days per year, electricity
prices were raised to three times the normal price be-
tween 12 pm and 3 pm in a ‘moderate price period,’
and raised to five times the normal price between 3
pm and 6 pm in a ‘high price period.’ These ‘DR
events’ were announced day-ahead when high peak
loads were expected.
In the base analysis, we used weather data obtained

from the National Climactic Data Center (NCDC)
[13], a division of the National Oceanic and Atmo-
spheric Administration (NOAA). Hourly outdoor air
temperature (OAT) was downloaded for the near-
est NWS-USAF-NAVY Station to each site. Lin-
ear interpolation was used to approximate OATs at
each 15 minute interval. Weather data were removed
for times when the interval between interpolants was
greater than six hours. In some cases, where excep-
tionally large amounts of data were missing, OAT
vectors were patched using OATs from the second
closest NOAA weather station.

To investigate the effect of the weather data source
on shed estimates, we obtained OAT data from
Weather Underground [14]. Weather Underground
is a private website that collects data from Personal
Weather Stations (PWS) operated by private indi-
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viduals and organizations. Stations undergo a one-
time calibration, but are not guaranteed to be mon-
itored by meteorological experts. Because Weather
Underground data are collected from a variety of
sources, data formats, content, and measurement in-
tervals may vary; however, OAT is measured at essen-
tially all stations and 5- or 15-minute measurement
intervals are typical. For many locations, especially
high density areas, there are typically multiple PWS
within the same range as the closest NWS-USAF-
NAVY Station. Over the period of interest, the PWS
had better up-time than the NWS-USAF-NAVY Sta-
tions and so the data were less spotty.

3 Baseline Model

In this section, we briefly describe the baseline model
in [12] that we used in this analysis. We build sep-
arate models for each building in each year (referred
to as a ‘facility-year’) since buildings change year to
year. As in [12], for each facility-year, we use five
months (May 1 – Sept 30) of load and OAT data for
each model.

The model assumes building load is a function of
time of week, and assigns a regression coefficient αi to
each 15-minute interval fromMonday through Friday,
ti where i = 1 · · · 480. The model also assumes that
demand, when the building is occupied, is a piecewise
linear and continuous function of OAT. We would ex-
pect that for some range of moderate OATs a build-
ing neither heats nor cools and so its demand is not a
strong function of OAT, but as OATs increase so do
cooling needs and in turn power consumption. When
OATs are especially high, the cooling system may be-
come maxed out, at which point demand is no longer
a strong function of OAT. A piecewise linear and con-
tinuous temperature dependency allows us to capture
these effects, which are more fully described in [12].
To implement this, we divide each observed temper-
ature, T , into six temperature components, Tc,j with
j = 1 · · · 6, associated with six equal sized tempera-
ture bins that cover the full range of observed tem-
peratures. A regression coefficient βj , is assigned to
each bin. Tc,j is computed with the following algo-
rithm:

1. Let Bk for k = 1 · · · 5 be the interior bounds of
the temperature intervals.

2. If T > B1 then Tc,1 = B1. Otherwise, Tc,1 = T

and Tc,m = 0 for m = 2 · · · 6 and algorithm is
ended.

3. For n = 2 · · · 4, if T > Bn then Tc,n = Bn−Bn−1.
Otherwise, Tc,n = T − Bn−1 and Tc,m = 0 for
m = (n+ 1) · · · 6 and algorithm is ended.

4. If T > B5 then Tc,5 = B5−B4 and Tc,6 = T−B5.

Estimated occupied mode demand, D̂o, is calcu-
lated as:

D̂o(ti, T (ti)) = αi +

6
∑

j=1

βjTc,j(ti) (1)

When the building is unoccupied we use only
one temperature-related regression coefficient, βu, for
simplicity. Estimated unoccupied mode demand, D̂u,
is calculated as:

D̂u(ti, T (ti)) = αi + βuT (ti) (2)

Ordinary Least Squares (OLS) is used to estimate the
parameters α, β, and βu.
The general procedure to build the model is as fol-

lows. We take building demand data and filter out
weekends, holidays, and days on which buildings par-
ticipated in DR events. We filter for power outages by
looking for days when the minimum power consump-
tion was less than 50% of the average minimum daily
power consumption during the summer. For any day
that falls below the threshold, we flag the entire day
as a ‘power outage day’ and remove it from the anal-
ysis.
Next, we take the OAT data and linearly interpo-

late it to 15 minutes prior to the time stamp on the
building data. We do this because each load mea-
surement represents the mean load by that building
over the previous 15 minute interval. After interpo-
lation, we filter out all times when the temperature
values were computed using interpolants greater than
6 hours apart. This represents the final, cleaned set
of data used to build the model.
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Next, we determine transitions between unoccu-
pied and occupied mode (usually in the morning)
and occupied model and unoccupied mode (usually
in the evening). In the original analysis, these transi-
tion times were determined through visual inspection
of the load shape data. An algorithm for doing this
is presented in Section 4.
The observed temperature range is divided into six

temperature bins. For example, if the minimum ob-
served temperature is 40◦F (4.4◦C) and the maxi-
mum is 100◦F (37.7◦C), then the minimum bin starts
at 40◦F and each of the six bins has width 10◦F. We
then decompose the observed temperatures into tem-
perature components. For example, for T = 65◦F,
we find Tc,1 = 50◦F, Tc,2 = 10◦F, Tc,3 = 5◦F, and
the remaining temperature components are 0◦F.
The regression equations (Eqns. 1 and 2) can be

written in matrix form:

y = Ax + ǫ (3)

where x is the parameter vector (including α, β, and
βu), y is the output vector (electric load), and ǫ is
the error. To generate A, we stack 487-column row
vectors each corresponding to an OAT/load observa-
tion. The first 480 columns correspond to the time
of week indicator variables. We set all entries to 0
except the one that corresponds to the 15-minute in-
terval associated with the data (that entry is set to
1). Columns 481-486 are the occupied mode temper-
ature components and column 487 is the unoccupied
mode temperature. We solve for the parameter vec-
tor x using an OLS estimator:

x̂ = (ATA)−1AT y (4)

In practice, this is calculated using the algorithm of
the software package that is used to implement the
model.
To make a prediction for a given time-of-week and

temperature, we generate the corresponding 487 col-
umn row vector, v, and predict:

ypredict = v · x (5)

To estimate the average demand shed over a period,
we make a prediction for each of the relevant 15-
minute intervals, subtract the observed demand, and

take the mean. We refer to these simply as ‘shed
estimates’ throughout the remainder of this paper.

Model Validation

The model described in the previous section was orig-
inally implemented in MATLAB. To do the analysis
described in this paper, we reimplemented the model
in Python and validated this implementation against
the results of the original implementation. While
our primary focus was simply to verify that the new
implementation performed correctly, the validation
process also helped us gain a sense for the variety
of important modeling implementation choices that
modelers face, and the implications of those choices.
These choices ranged from the technical, such as
rounding choices that resulted in floating point dis-
agreements between estimates made on different com-
puter systems, to the more pragmatic, such as a
strong influence of the effect of thresholds associated
with filtering algorithms whose differences caused the
model to be built on different subsets of data. This
experience helped us pick the set of modeling choices
to investigate, described in the next section. Addi-
tionally, it left us with a number of lessons learned,
described in Section 5.
We validated the Python implementation via a two

stage process. We first looked at five facility-years
worth of data in detail, performing an end-to-end
comparison between the two implementations, identi-
fying and classifying as many discrepancies as could
be found. After the detailed validation, a statisti-
cal analysis was completed on the full set of data
with the purpose of comparing the population shed
estimates from one implementation to the other. At
this point, outliers were identified visually and issues
were tracked down until the authors were satisfied
that the two implementations behaved more-or-less
identically.
Figure 1 shows the comparison between the esti-

mates of the first analysis and the second analysis.
Each point represents a comparison between a DR
shed (one for the moderate price period and one for
the high price period for each facility-year) calculated
using both implementations.
The remaining discrepancies were caused by a va-
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Figure 1: FINAL RESULT OF VALIDATION.

riety of minor factors. Because of a choice to round
interpolated OAT data, OAT values used by identi-
cal algorithms on two different machines occasionally
differed (details described in Section 5). Addition-
ally, the boundaries on the OAT filter were differ-
ent in the two implementations, resulting in a small
amount of OAT data being used by one implemen-
tation and not the other. Finally, a slightly different
power outage filtering routine was used in the second
implementation; sites on which the two filters differed
were removed from the analysis, so as not to bias re-
sults. Ultimately, 49 facility-years worth of data (out
of the original 87 facility-years of data) were used to
perform the analyses in the subsequent sections. In
total, each analysis includes 1176 shed estimates.

4 Modeling Choices Investi-
gated

The goal of our analysis was to gain a general sense
of the relative importance of different potential mod-
eling implementation choices focusing on five types
of choices: choice of weather data, choice of building
load data resolution, choice of method to determine
occupied/unoccupied mode transition times, choice
of alignment of OAT data with building demand data,

and choice of power outage filter. This analysis does
not attempt to be comprehensive for each modeling
choice, but instead seeks to test plausible real world
choices, to get a better sense of what the contentious
choices might be and where future efforts in model
building might be directed. Therefore, for each type
of modeling implementation choice investigated, we
looked at two or three different choices that could be
made and the effect of those choices on the resulting
analysis when compared with the base analysis.
For each choice, we calculate the sheds generated

using the validated baseline model (producing the
‘base analysis’) and then generate the sheds using
the model with variations (‘variant analysis’). We
calculate a variety of statistics on these predictions
to gain a sense for the effect of the two choices
on shed prediction. For both the base and variant
analyses, we calculate the mean shed. Addition-
ally, we compute differences between the base and
variant sheds as (shedvariant − shedbase), and report
the mean and variance of the differences. We calcu-
late the absolute mean difference for each shed as
|shedvariant − shedbase|, and report the mean and
variance of these values. We also calculate the rel-
ative difference in sheds as

∣

∣

∣

∣

shedvariant − shedbase

shedbase

∣

∣

∣

∣

,

and report the mean and variance of these values.
The statistics are listed in Tab. 1.

Weather Data Source

To understand the effect of the choice of weather data
source, we compared the results of the base analysis
which uses NCDC OAT data to the results of a vari-
ant analysis which uses Weather Underground OAT
data.
For each facility, we used its zip code to look up

the closest weather stations using the Weather Un-
derground website and downloaded data from the two
closest stations. When these two stations differed in
distance to the zip code by more than 50%, we used
data from the closest station directly. Otherwise, we
averaged the two data streams when both were avail-
able and directly used data from one of the two sites
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Base: Sheds calculated with NCDC data
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Figure 2: COMPARISON OF BASE ANALYSIS TO
VARIANT ANALYSIS WITH WEATHER UNDER-
GROUND DATA.

when only one was available. For several sites, we
were not able to easily obtain good weather data from
Weather Underground. We removed these sites from
both the base and variant analysis for this specific
comparison in order to generate good statistics.
The results of the comparison between NOAA and

Weather Underground are shown in Fig. 2. Shed
statistics are summarized in Tab. 1.

Building Data Resolution

Building models may be built using various resolu-
tions of load and weather data. This choice may
be made either through a choice of sensor configu-
ration or it may be made by a building modeler who
chooses to downsample or interpolate the data. To
get a sense of the effect of data resolution on shed es-
timates, we took the original 15-minute interval data
and decreased the resolution to 30- and 60-minute
interval data.
For each time series used in this analysis, we cal-

culated 30- and 60-minute resolution data by finding
each 30- or 60-minute period worth of data and taking
the mean of those values. Care was taken to ensure
that the intervals were day-aligned, meaning that the
first interval of the day always represented demand

−300 −200 −100 0 100 200 300
Base: Sheds using 15 minute building data analysis
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Figure 3: COMPARISON OF BASE ANALY-
SIS TO VARIANT ANALYSIS USING 30- AND
60-MINUTE INTERVAL BUILDING DEMAND
DATA.

during the interval from midnight to either 00:30 or
01:00.
If one or more data points were missing, we skipped

over that point in the algorithm. For example, if a
30-minute interval only had zero or one data point,
or a 60-minute interval contained zero, one, two, or
three data points, they were skipped over and not
included during the analysis. This had a minimal
effect since sites typically had fewer than 10 hours of
data discarded during this process.
Once completed, we ran the analysis to generate

shed estimates with the 30- and 60-minute resolution
data. The results of the 15- vs. 30-minute analysis
and the 15- vs 60-minute analyses are plotted in Fig. 3
and statistics are summarized in Tab. 1.

Occupied/Unoccupied Mode Transi-
tions

The occupied mode of the building is an implicit vari-
able in the model because temperature effects are
modeled differently depending on the mode, accord-
ing to either Eqn. 1 or 2. In the base analysis, oc-
cupied periods were determined manually by visual
inspection of the data. This process has all the ad-
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Base: Sheds calculated using manually chosen thresholds
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Figure 4: COMPARISON OF BASE ANALYSIS TO
VARIANT ANALYSIS USING AN AUTOMATED
OCCUPIED MODE DETECTION ALGORITHM.

vantages and disadvantages of having a human in the
loop. For the variant analysis, we developed an algo-
rithmic approach to determining occupied and unoc-
cupied period transition times. For each day worth
of data, the algorithm calculates the 2.5th and 97.5th
percentiles of the load, referred to as D2.5 and D97.5.
These percentiles were chosen based on work in [15]
which used them in order to minimize the effect of de-
mand outliers skewing the analysis. For each day, the
transition time from unoccupied to occupied mode
(‘start time’), typically in the morning, was deter-
mined by calculating the first time the building tran-
sitioned above 0.1×(D97.5−D2.5)+D2.5. The transi-
tion from occupied to unoccupied mode (‘end time’)
was calculated as the final time during the day the
building transitioned below this threshold. The mean
of each facility-year’s start-times and end-times were
used to estimate when each building was in occupied
and unoccupied modes.

The results comparing the base analysis to the vari-
ant analysis with an automated occupied mode detec-
tion algorithm are shown in Fig. 4. Shed statistics are
summarized in Tab. 1.
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Base: Shed using 15 minute building data analysis
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Figure 5: COMPARISON OF BASE ANALYSIS
TO VARIANT ANALYSIS USING DIFFERENT
ALIGNMENT OF OAT AND DEMAND DATA.

Alignment of OAT Data with Building
Demand Data

Each load measurement is associated with an OAT
measurement. In the base analysis, OATs were as-
signed to the beginning of the interval over which
the building demand measurements were taken. For
example, with 15-minute interval data, the demand
measurement at 3:00pm was assigned an OAT at
2:45pm. We tested the effect of assigning OAT data
based on the end of the building demand interval
measurement, i.e., matching 3pm to 3pm, a simpler
choice. The results are shown in Fig. 5. Shed statis-
tics are summarized in Tab. 1.

Sensitivity of Power Outage Filter

A day is flagged as being a power outage day and fil-
tered if its daily minimum demand falls below some
threshold percentage of the mean daily minimum de-
mand for the dataset. In the base analysis, this
threshold was set to 50%. To test the effects of per-
mitting borderline data to enter the analysis, we ran
the analysis without a power filter. We also tested
the effects of running with a more sensitive filter that
flags days with a measurement below a 75% of av-
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Base: Sheds using 15 minute building data analysis
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Figure 6: COMPARISON OF BASE ANALYSIS
TO VARIANT ANALYSES USING DIFFERENT
THRESHOLDS FOR FILTERING POWER OUT-
AGE DAYS.

erage daily minimum threshold. The results are in
Fig. 6 and the shed statistics are reported in Tab. 1.
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Table 1: COMPARISON OF STATISTICS BETWEEN BASE AND VARIANT ANALYSES.

Weather
Under-
ground
data

30-
minute
interval
data

60-
minute
interval
data

Auto-
mated
occupied
mode
detec-
tion

Shift
data

alignment

No
Power
Outage
Filter

Sensi-
tive

Power
Outage
Filter

Mean Shed using Base Analysis (kW) -31.9* -34.3 -34.3 -34.3 -34.3 -34.3 -34.3
Mean Shed using Variant Analysis (kW) -32.1 -34.6 -33.8 -34.1 -33.3 -30.7 -37.2
Mean Shed Difference (kW) -0.2 -0.2 0.5 0.2 1.0 3.7 -2.9
Mean Absolute Shed Difference (kW) 14.9 2.2 3.6 2.2 3.7 4.9 9.8
Mean Relative Shed Difference (kW) 1.2 0.7 0.5 0.5 0.3 0.2 0.6
Variance of Shed Difference (kW2) 554.9 12.0 25.9 14.9 24.8 868.6 350.3
Variance of Absolute Shed Diff. (kW2) 333.7 7.3 13.0 10.2 12.3 857.7 262.3
Variance of Relative Shed Diff. (kW2) 134.2 207.1 13.2 43.6 1.5 1.1 7.4

*This value is different from the others in this row because it is computed with a subset of the data, as explained in the text.
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5 Discussion

Effect of Modeling Choices on Shed Es-
timation

We find that shed estimates are strongly sensitive
to the source of the OAT data. Especially in areas
with strong microclimates, it may be worth invest-
ing in good OAT data. Where this is not possible,
it may be worth acquiring multiple sources of data
and running multiple analyses to gain a sense for the
potential differences in shed estimates and possible
interpretations of the results. It is clear that the im-
pact of weather data on baseline model predictions is
a topic needing further investigation.

Investigating the choice of building data resolu-
tion, we found a moderate sensitivity towards using
60-minute building interval data compared with 15-
minute data, and a relatively slight effect when us-
ing 30-minute over 15-minute data. For this data
set, it appears that discrepancies do not increase sub-
stantially as data set is coarsened, at least over this
range. This suggests that is may be acceptable to use
a coarser load/OAT data for this sort of analysis.
We also determine high levels of agreement be-

tween manually determining building occupancy
mode thresholds and automatically detecting it us-
ing a very simple algorithm. While we make no claim
that this algorithm is optimal for this task, even a ba-
sic approach agrees very well with manually choosing
the times. From this, we conclude that automatic
detection is beneficial, providing very similar perfor-
mance while eliminating the need for a human in-the-
loop, speeding up processing time.
We find there are only minor effects associated

with demand and OAT data alignment, at least for
plus/minus 15-minutes. Although offsetting OATs
by 15 minutes against the building demand data may
be more accurate, this subtle complexity could be a
potential source of invisible disagreements between
tools in the future. This result suggests that it may
be possible to opt for a simpler approach without
noticeably affecting results, especially given the ap-
parent relative sensitivity to the weather data.

We find large differences caused by filtering power
outages. Each day of marginal data has an outsized

effect on the ultimate estimation of model parame-
ters, and therefore the choice of this parameter mat-
ters greatly to the overall analysis. This has mul-
tiple implications. First, it is likely worth investing
resources into developing good algorithms to detect
power outages. It may also be worth obtaining in-
formation on power outages directly, rather that es-
timating them. Further investigation is warranted.

Lessons Learned through Algorithm
Validation

While validating the model, we learned several practi-
cal lessons that may be of use to other implementers.
The first concerns rounding interpolated values. The
original implementation rounded interpolated OATs
and we found that this choice produced discrepan-
cies across different machines. One machine would
linearly interpolate a value ending in .5 and would
round up; another machine would calculate a value of
.49999... and round down. These individual discrep-
ancies appeared to occur arbitrarily. While we were
not able to discern a significant difference in shed es-
timates caused by this choice, from a software devel-
opment perspective it confers little benefit, increases
the likelihood of discrepancies, and makes it more dif-
ficult to compare intermediate results. Therefore, we
recommend avoiding such choices.
The second discovery was the importance of the

algorithms used to filter out bad load and OAT data.
Many of the discrepancies we tracked down had to
do with specifics as to how these filters were applied.
In most cases, we were surprised by the large effect
of these filtering parameters. While we did not fully
investigate these choices in this work, we suggest test-
ing various settings against one another to character-
ize the effect of including or not including marginal
data on analyses.
Finally, during the validation, we also discovered

that there were several unexpected pitfalls caused by
external software purporting to do the same thing
but actually not. For instance, between the MAT-
LAB and Python computer environments, the default
variance calculation had a different interpretation as
either sample or population variance. Additionally,
implementation of the two regress functions treated

10



NaNs very differently. Both of these issues caused
initial discrepancies. Especially where detailed anal-
yses are not available with which to validate one tool
against another, we recommend testing external com-
puter routines against known inputs, to ensure that
the semantics are as expected.

6 Conclusion

We have investigated the sensitivity of DR shed esti-
mates to different baseline modeling implementation
choices. We find that shed estimates are sensitive
to outdoor air temperature data and therefore ac-
quisition of good weather data should be a key fo-
cus of any baseline analysis. We also find that auto-
mated approaches for determining building occupied
mode work essentially as well as manual approaches
for this data set. Ultimately, for large data sets, auto-
mated approaches are necessary in order to increase
the throughput of these analyses. Additionally, we
find that choices surrounding data filtration schemes
that flag and remove marginal data have a large in-
fluence on predictions. Therefore, it may be worth
expending extra effort to ensure data quality so as to
avoid having to heuristically filter bad data.

We find that short time-scale (plus/minus 15-
minute) alignment of OAT and demand data has a
relatively minor effect on model prediction. There-
fore, it may be advisable to standardize on simple
approaches. We also find that shed estimates are not
sensitive to building demand resolution, up to one
hour. Depending on the application, it may be an
acceptable trade off to use lower resolved load/OAT
data.

We also note the difficulty in validating baseline
model implementations because any number of subtle
implementation choices can affect the results in non-
trivial ways. We suggest defining a robust validation
method for these types of algorithms, especially be-
cause in practice certain comparisons may be difficult
or impossible given data access requirements. If it is
not possible to fully validate in an end-to-end man-
ner, software should be tested on a common data set
to ensure a common language between software tools.
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